Аналоговый и дискретный способы представления изображений и звука. Дискретизация изображения Ограничение размеров изображения

Замену непрерывного изображения дискретным можно выполнить различными способами. Можно, например, выбрать какую-либо систему ортогональных функций и, вычислив коэффициенты представления изображения по этой системе (по этому базису), заменить ими изображение. Многообразие базисов дает возможность образования различных дискретных представлений непрерывного изображения. Однако наиболее употребительной является периодическая дискретизация, в частности, как упоминалось выше, дискретизация с прямоугольным растром. Такой способ дискретизации может рассматриваться как один из вариантов применения ортогонального базиса, использующего в качестве своих элементов сдвинутые -функции. Далее, следуя, в основном, , подробно рассмотрим основные особенности прямоугольной дискретизации.

Пусть - непрерывное изображение, а - соответствующее ему дискретное, полученное из непрерывного путем прямоугольной дискретизации. Это означает, что связь между ними определяется выражением:

где - соответственно вертикальный и горизонтальный шаги или интервалы дискретизации. Рис.1.1 иллюстрирует расположение отсчетов на плоскости при прямоугольной дискретизации.

Основной вопрос, который возникает при замене непрерывного изображения дискретным, состоит в определении условий, при которых такая замена является полноценной, т.е. не сопровождается потерей информации, содержащейся в непрерывном сигнале. Потери отсутствуют, если, располагая дискретным сигналом, можно восстановить непрерывный. С математической точки зрения вопрос, таким образом, заключается в восстановлении непрерывного сигнала в двумерных промежутках между узлами, в которых его значения известны или, иными словами, в осуществлении двумерной интерполяции. Ответить на этот вопрос можно, анализируя спектральные свойства непрерывного и дискретного изображений.

Двумерный непрерывный частотный спектр непрерывного сигнала определяется двумерным прямым преобразованием Фурье:

которому отвечает двумерное обратное непрерывное преобразование Фурье:

Последнее соотношение верно при любых значениях , в том числе и в узлах прямоугольной решетки . Поэтому для значений сигнала в узлах, учитывая (1.1), соотношение (1.3) можно записать в виде:

Обозначим для краткости через прямоугольный участок в двумерной частотной области . Вычисление интеграла в (1.4) по всей частотной области можно заменить интегрированием по отдельным участкам и суммированием результатов:

Выполняя замену переменных по правилу , добиваемся независимости области интегрирования от номеров и :

Здесь учтено, что при любых целых значениях и . Данное выражение по своей форме очень близко к обратному преобразованию Фурье. Отличие состоит лишь в неправильном виде экспоненциального множителя. Для придания ему необходимого вида введем нормированные частоты и выполним в соответствии с этим замену переменных. В результате получим:

Теперь выражение (1.5) имеет форму обратного преобразования Фурье, следовательно, стоящая под знаком интеграла функция

(1.6)

является двумерным спектром дискретного изображения. В плоскости ненормированных частот выражение (1.6) имеет вид:

(1.7)

Из (1.7) следует, что двумерный спектр дискретного изображения является прямоугольно периодическим с периодами и по осям частот и соответственно. Спектр дискретного изображения образуется в результате суммирования бесконечного количества спектров непрерывного изображения, отличающихся друг от друга частотными сдвигами и . Рис.1.2 качественно показывает соотношение между двумерными спектрами непрерывного (рис.1.2.а) и дискретного (рис.1.2.б) изображений.

Рис. 1.2. Частотные спектры непрерывного и дискретного изображений

Сам результат суммирования существенно зависит от значений этих частотных сдвигов, или, иными словами, от выбора интервалов дискретизации . Допустим, что спектр непрерывного изображения отличен от нуля в некоторой двумерной области в окрестности нулевой частоты, т. е. описывается двумерной финитной функцией. Если при этом интервалы дискретизации выбраны так, что при , , то наложения отдельных ветвей при формировании суммы (1.7) происходить не будет. Следовательно, в пределах каждого прямоугольного участка от нуля будет отличаться лишь одно слагаемое. В частности, при имеем:

при , . (1.8)

Таким образом, в пределах частотной области спектры непрерывного и дискретного изображений с точностью до постоянного множителя совпадают. При этом спектр дискретного изображения в этой частотной области содержит полную информацию о спектре непрерывного изображения. Подчеркнем, что данное совпадение имеет место лишь при оговоренных условиях, определяемых удачным выбором интервалов дискретизации. Отметим, что выполнение этих условий, согласно (1.8), достигается при достаточно малых значениях интервалов дискретизации , которые должны удовлетворять требованиям:

в которых - граничные частоты двумерного спектра.

Соотношение (1.8) определяет способ получения непрерывного изображения из дискретного . Для этого достаточно выполнить двумерную фильтрацию дискретного изображения низкочастотным фильтром с частотной характеристикой

Спектр изображения на его выходе содержит ненулевые компоненты лишь в частотной области и равняется, согласно (1.8), спектру непрерывного изображения . Это означает, что изображение на выходе идеального фильтра низких частот совпадает с .

Таким образом, идеальное интерполяционное восстановление непрерывного изображения выполняется при помощи двумерного фильтра с прямоугольной частотной характеристикой (1.10). Нетрудно записать в явном виде алгоритм восстановления непрерывного изображения. Двумерная импульсная характеристика восстанавливающего фильтра, которую легко получить при помощи обратного преобразования Фурье от (1.10), имеет вид:

.

Продукт фильтрации может быть определен при помощи двумерной свертки входного изображения и данной импульсной характеристики. Представив входное изображение в виде двумерной последовательности -функций

после выполнения свертки находим:

Полученное соотношение указывает способ точного интерполяционного восстановления непрерывного изображения по известной последовательности его двумерных отсчетов. Согласно этому выражению для точного восстановления в роли интерполирующих функций должны использоваться двумерные функции вида . Соотношение (1.11) представляет собой двумерный вариант теоремы Котельникова-Найквиста.

Подчеркнем еще раз, что эти результаты справедливы, если двумерный спектр сигнала является финитным, а интервалы дискретизации достаточно малы. Справедливость сделанных выводов нарушается, если хотя бы одно из этих условий не выполняется. Реальные изображения редко имеют спектры с ярко выраженными граничными частотами. Одной из причин, приводящих к неограниченности спектра, является ограниченность размеров изображения. Из-за этого при суммировании в (1.7) в каждой из зон проявляется действие слагаемых из соседних спектральных зон. При этом точное восстановление непрерывного изображения становится вообще невозможным. В частности, не приводит к точному восстановлению и использование фильтра с прямоугольной частотной характеристикой.

Особенностью оптимального восстановления изображения в промежутках между отсчетами является использование всех отсчетов дискретного изображения, как это предписывается процедурой (1.11). Это не всегда удобно, часто требуется восстанавливать сигнал в локальной области, опираясь на некоторое небольшое количество имеющихся дискретных значений. В этих случаях целесообразно применять квазиоптимальное восстановление при помощи различных интерполирующих функций. Такого рода задача возникает, например, при решении проблемы привязки двух изображений, когда из-за геометрических расстроек этих изображений имеющиеся отсчеты одного из них могут соответствовать некоторым точкам, находящимся в промежутках между узлами другого. Решение этой задачи более подробно обсуждается в последующих разделах данного пособия.

Рис. 1.3. Влияние интервала дискретизации на восстановление изображения

«Отпечаток пальца»

Рис. 1.3 иллюстрирует влияние интервалов дискретизации на восстановление изображений. Исходное изображение, представляющее собой отпечаток пальца, приведено на рис. 1.3, а, а одно из сечений его нормированного спектра - на рис. 1.3, б. Данное изображение является дискретным, а в качестве граничной частоты использовано значение . Как следует из рис. 1.3, б, значение спектра на этой частоте пренебрежимо мало, что гарантирует качественное восстановление. По сути дела, наблюдаемая на рис. 1.3.а картина и является результатом восстановления непрерывного изображения, а роль восстанавливающего фильтра выполняет устройство визуализации - монитор или принтер. В этом смысле изображение рис. 1.3.а может рассматриваться как непрерывное.

Рис. 1.3, в, г показывают последствия от неправильного выбора интервалов дискретизации. При их получении осуществлялась “дискретизация непрерывного” изображения рис. 1.3.а путем прореживания его отсчетов. Рис. 1.3, в соответствует увеличению шага дискретизации по каждой координате в три, а рис. 1.3, г - в четыре раза. Это было бы допустимо, если бы значения граничных частот были ниже в такое же число раз. В действительности, как видно из рис. 1.3, б, происходит нарушение требований (1.9), особенно грубое при четырехкратном прореживании отсчетов. Поэтому восстановленные при помощи алгоритма (1.11) изображения оказываются не только расфокусированными, но и сильно искажают текстуру отпечатка.

Рис. 1.4. Влияние интервала дискретизации на восстановление изображения «Портрет»

На рис. 1.4 приведена аналогичная серия результатов, полученных для изображения типа “портрет”. Последствия более сильного прореживания (в четыре раза на рис. 1.4.в и в шесть раз на рис. 1.4.г) проявляются в основном в потере четкости. Субъективно потери качества представляются менее значительными, чем на рис. 1.3. Это находит свое объяснение в значительно меньшей ширине спектра, чем у изображения отпечатка пальца. Дискретизация исходного изображения соответствует граничной частоте . Как видно из рис. 1.4.б, это значение намного превышает истинное значение . Поэтому увеличение интервала дискретизации, иллюстрируемое рис. 1.3, в, г, хотя и ухудшает картину, все же не приводит к таким разрушительным последствиям, как в предыдущем примере.

В предыдущей главе мы изучали линейные пространственно-инвариантные системы в непрерывной двумерной области. На практике мы имеем дело с изображениями, которые имеют ограниченные размеры и в то же время отсчитываются в дискретном наборе точек. Поэтому методы, разработанные до сих пор, необходимо приспособить, расширить и модифицировать так, чтобы их можно было применить и в такой области. Возникает также и несколько новых моментов, требующих аккуратного рассмотрения.

Теорема отсчетов говорит о том, при каких условиях по дискретному набору значений можно точно восстановить непрерывное изображение. Мы также узнаем, что происходит, когда условия ее применимости не выполняются. Все это имеет прямое отношение к разработке зрительных систем.

Методы, требующие перехода к частотной области, стали популярными частично благодаря алгоритмам быстрого вычисления дискретного преобразования Фурье. Однако нужно соблюдать осторожность, поскольку эти методы предполагают наличие периодического сигнала. Мы обсудим, как можно удовлетворить этому требованию и к чему приводит его нарушение.

7.1. Ограничение размеров изображения

На практике изображения всегда имеют конечные размеры. Рассмотрим прямоугольное изображение шириной и высотой Я. Теперь нет необходимости брать интегралы в преобразовании Фурье в бесконечных пределах:

Любопытно, что для восстановления функции нам необязательно знать на всех частотах. Знание того, что при представляет собой жесткое ограничение. Иными словами, функция, отличная от нуля только в ограниченной области плоскости изображения, содержит гораздо меньше информации, чем функция, не обладающая этим свойством.

Чтобы в этом убедиться, представим, что плоскость экрана покрыта копиями заданного изображения. Иными словами, мы расширяем наше изображение до периодической в обоих направлениях функции

Здесь - наибольшее целое число, не превосходящее х. Преобразование Фурье такого размноженного изображения имеет вид

С помощью подходящим образом подобранных множителей сходимости в упр. 7.1 доказывается, что

Следовательно,

откуда мы видим, что равна нулю всюду, кроме дискретного набора частот Таким образом, чтобы найти нам достаточно знать в этих точках. Однако функция получается из простым отсечением участка, для которого . Поэтому, чтобы восстановить нам достаточно знать лишь для всех Это - счетное множество чисел.

Обратите внимание на то, что преобразование периодической функции оказывается дискретным. Обратное преобразование можно представить в виде ряда, поскольку

Другой способ убедиться в этом - рассматривать функцию как функцию, получающуюся обрезанием некоторой функции для которой внутри окна. Иными словами, где функция выделения окна определяется следующим образом.

Аналоговое и дискретное изображение. Графическая информация может быть представлена в аналоговой или дискретной форме. Примером аналогового изображения может служить живописное полотно, цвет которого изменяется непрерывно, а примером дискретного изображения, напечатанный с помощью струйного принтера рисунок, состоящий из отдельных точек разного цвета. Аналоговое (картина маслом). Дискретное.

Слайд 11 из презентации «Кодирование и обработка информации» . Размер архива с презентацией 445 КБ.

Информатика 9 класс

краткое содержание других презентаций

«Алгоритмы разветвляющейся структуры» - ЕСЛИ условие, ТО действие. Что мы знаем. Структура урока. Разветвляющийся алгоритм. Выполните алгоритм и заполните таблицу. Во второй тур конкурса проходит обучающийся, набравший от 85 до 100 баллов включительно. Ввести количество баллов и определить, прошел ли он во второй тур. Найти наибольшее число между а и b. Составить программу на языке программирования. Разветвляющийся алгоритм – это алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий.

«Создание искусственного интеллекта» - Имитационный подход. Подходы к построению систем искусственного интеллекта. Эволюционный подход. Искусственный интеллект. Может сожительствовать со многими людьми, помогая справляться с личными проблемами. Структурный подход. Логический подход. Проблемы при разработке. Перспективы развития и области применения.

«Циклические программы» - Цифра. Цикл с предусловием. Найти сумму. Цикл с постусловием. Цикл с параметром. Алгоритм Евклида. Циклические программы. Найти сумму натуральных чисел. Понятие цикла. Первоначальный взнос. Табулирование функции. Вычислить. Пример. Делители. Информатика. Найти количество чисел. Найти. Найти количество трехзначных натуральных чисел. Трехзначные числа. Найти множество значений функции. Таблица перевода долларов.

«Что такое электронная почта» - Отправитель. Адрес электронной почты. История электронной почты. Вопрос появления электронной почты. Структура письма. Маршутизация почты. Письмо. Электронное письмо. Копия. Дата. X-mailer. Электронная почта. Как работает электронная почта.

«Работа с электронной почтой» - Адрес электронной почты. Почтовый ящик. Протокол электронной почты. Файлообменная сеть. Разделение адресов. Преимущества электронной почты. Почтовые клиенты. Изобретатель электронной почты. Адрес. Электронная почта. ПО для работы с электронной почтой. Как работает электронная почта. Телеконференция. Почтовый сервер. Обмен файлами.

«Обработка в Photoshop» - Крутые ребята. Как отличить подделку. Растровые и векторные изображения. Введение. Призовые места. Программа Adobe Photoshop. Ретуширование. Конкурсы по работе с «фотошопом». Корректирование яркости. Мои друзья. Практическая часть. Похожие программы. Основная часть. Дизайн. Необычные животные. Монтаж нескольких изображений.

Интернет